29 research outputs found

    Singular perturbations approach to localized surface-plasmon resonance: Nearly touching metal nanospheres

    Full text link
    Metallic nano-structures characterised by multiple geometric length scales support low-frequency surface-plasmon modes, which enable strong light localization and field enhancement. We suggest studying such configurations using singular perturbation methods, and demonstrate the efficacy of this approach by considering, in the quasi-static limit, a pair of nearly touching metallic nano-spheres subjected to an incident electromagnetic wave polarized with the electric field along the line of sphere centers. Rather than attempting an exact analytical solution, we construct the pertinent (longitudinal) eigen-modes by matching relatively simple asymptotic expansions valid in overlapping spatial domains. We thereby arrive at an effective boundary eigenvalue problem in a half-space representing the metal region in the vicinity of the gap. Coupling with the gap field gives rise to a mixed-type boundary condition with varying coefficients, whereas coupling with the particle-scale field enters through an integral eigenvalue selection rule involving the electrostatic capacitance of the configuration. By solving the reduced problem we obtain accurate closed-form expressions for the resonance values of the metal dielectric function. Furthermore, together with an energy-like integral relation, the latter eigen-solutions yield also closed-form approximations for the induced-dipole moment and gap-field enhancement under resonance. We demonstrate agreement between the asymptotic formulas and a semi-numerical computation. The analysis, underpinned by asymptotic scaling arguments, elucidates how metal polarization together with geometrical confinement enables a strong plasmon-frequency redshift and amplified near-field at resonance.Comment: 13 pages, 7 figure

    Spoof surface plasmons guided by narrow grooves

    Full text link
    An approximate description of surface waves propagating along periodically grooved surfaces is intuitively developed in the limit where the grooves are narrow relative to the period. Considering acoustic and electromagnetic waves guided by rigid and perfectly conducting gratings, respectively, the wave field is obtained by interrelating elementary approximations obtained in three overlapping spatial domains. Specifically, above the grating and on the scale of the period the grooves are effectively reduced to point resonators characterised by their dimensions as well as the geometry of their apertures. Along with this descriptive physical picture emerges an analytical dispersion relation, which agrees remarkably well with exact calculations and improves on preceding approximations. Scalings and explicit formulae are obtained by simplifying the theory in three distinguished propagation regimes, namely where the Bloch wavenumber is respectively smaller than, close to, or larger than that corresponding to a groove resonance. Of particular interest is the latter regime where the field within the grooves is resonantly enhanced and the field above the grating is maximally localised, attenuating on a length scale comparable with the period

    Weakly nonlinear dynamics of a chemically active particle near the threshold for spontaneous motion. Part 1: Adjoint method

    Full text link
    In this Series, we study the weakly nonlinear dynamics of chemically active particles near the threshold for spontaneous motion. In this Part, we focus on steady solutions and develop an 'adjoint method' for deriving the nonlinear amplitude equation governing the particle's velocity, first assuming the canonical model in the literature of an isotropic chemically active particle and then considering general perturbations about that model. As in previous works, the amplitude equation is obtained from a solvability condition on the inhomogeneous problem at second order of a particle-scale weakly nonlinear expansion, the formulation of that problem involving asymptotic matching with a leading-order solution in a remote region where advection and diffusion are balanced. We develop a generalised solvability condition based on a Fredholm Alternative argument, which entails identifying the adjoint linear operator at the threshold and calculating its kernel. This circumvents the apparent need in earlier theories to solve the second-order inhomogeneous problem, resulting in considerable simplification and adding insight by making it possible to treat a wide range of perturbation scenarios on a common basis. To illustrate our approach, we derive and solve amplitude equations for a number of perturbation scenarios (external force and torque fields, non-uniform surface properties, first-order surface kinetics and bulk absorption), demonstrating that sufficiently near the threshold weak perturbations can appreciably modify and enrich the landscape of steady solutions

    Asymptotic network models of subwavelength metamaterials formed by closely packed photonic and phononic crystals

    Full text link
    We demonstrate that photonic and phononic crystals consisting of closely spaced inclusions constitute a versatile class of subwavelength metamaterials. Intuitively, the voids and narrow gaps that characterise the crystal form an interconnected network of Helmholtz-like resonators. We use this intuition to argue that these continuous photonic (phononic) crystals are in fact asymptotically equivalent, at low frequencies, to discrete capacitor-inductor (mass-spring) networks whose lumped parameters we derive explicitly. The crystals are tantamount to metamaterials as their entire acoustic branch, or branches when the discrete analogue is polyatomic, is squeezed into a subwavelength regime where the ratio of wavelength to period scales like the ratio of period to gap width raised to the power 1/4; at yet larger wavelengths we accordingly find a comparably large effective refractive index. The fully analytical dispersion relations predicted by the discrete models yield dispersion curves that agree with those from finite-element simulations of the continuous crystals. The insight gained from the network approach is used to show that, surprisingly, the continuum created by a closely packed hexagonal lattice of cylinders is represented by a discrete honeycomb lattice. The analogy is utilised to show that the hexagonal continuum lattice has a Dirac-point degeneracy that is lifted in a controlled manner by specifying the area of a symmetry-breaking defect

    Surface-plasmon resonances of arbitrarily shaped nanometallic structures in the small-screening-length limit

    Get PDF
    According to the hydrodynamic Drude model, surface-plasmon resonances of metallic nanostructures blueshift owing to the nonlocal response of the metal's electron gas. The screening length characterising the nonlocal effect is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained nonlocal description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary shaped nanometallic structures is then developed. The effect of nonlocality is not always a perturbation and we present a detailed analysis of the "bonding" modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalisation of those predicted assuming a local metal permittivity

    Asymptotics of surface-plasmon redshift saturation at sub-nanometric separations

    Full text link
    Many promising nanophotonics endeavours hinge upon the unique plasmonic properties of nanometallic structures with narrow non-metallic gaps, which support super-concentrated bonding modes that singularly redshift with decreasing separations. In this letter, we present a descriptive physical picture, complemented by elementary asymptotic formulae, of a nonlocal mechanism for plasmon-redshift saturation at subnanometric gap widths. Thus, by considering the electron-charge and field distributions in the close vicinity of the metal-vacuum interface, we show that nonlocality is asymptotically manifested as an effective potential discontinuity. For bonding modes in the near-contact limit, the latter discontinuity is shown to be effectively equivalent to a widening of the gap. As a consequence, the resonance-frequency near-contact asymptotics are a renormalisation of the corresponding local ones. Specifically, the renormalisation furnishes an asymptotic plasmon-frequency lower bound that scales with the 1/41/4-power of the Fermi wavelength. We demonstrate these remarkable features in the prototypical cases of nanowire and nanosphere dimers, showing agreement between our elementary expressions and previously reported numerical computations

    Spontaneous locomotion of a symmetric squirmer

    Full text link
    The squirmer is a popular model to analyse the fluid mechanics of a self-propelled object, such as a micro-organism. We demonstrate that some fore-aft symmetric squirmers can spontaneously self-propel above a critical Reynolds number. Specifically, we numerically study the effects of inertia on axisymmetric squirmers characterised by a 'quadrupolar' fore-aft symmetric distribution of surface-slip velocity; under creeping-flow conditions, such squirmers generate a pure stresslet flow, the stresslet sign classifying the squirmer as either a 'pusher' or 'puller.' Assuming axial symmetry, and over the examined range of the Reynolds number ReRe (defined based upon the magnitude of the quadrupolar squirming), we find that spontaneous symmetry breaking occurs in the puller case above Re≈14.3Re \approx 14.3, with steady swimming emerging at the threshold via a supercritical pitchfork bifurcation, beyond which the swimming speed grows monotonically with ReRe
    corecore